Partenaires

Logo Université Paris 13
Logo LSPM



Rechercher

Sur ce site

Sur le Web du CNRS


Accueil du site > Équipes scientifiques > > MER/EMC3 > Thématiques > EMCγ

EMCγ

Endommagement – Modélisation – Comportement (accéder aux autres thématiques de l’équipe EMC3.)

a) Endommagement des élastomères. Pour résoudre des problèmes posés dans les applications industrielles sur le comportement et l’endommagement des élastomères sous contraintes multiaxiales, des études théoriques et numériques [LML.08] ont été menées en partant des modèles de chaînes moléculaires. La technique de l’homogénéisation a été utilisée pour établir un modèle constitutif compressible en tenant compte de la cavitation et la croissance des porosités. Le modèle établi a permis de résoudre des problèmes industriels et il a ouvert une voie très prometteuse dans la modélisation des différents phénomènes complexes des élastomères relatifs à l’endommagement par cavitation.

Figure.7 Gauche : Essai de traction sur une éprouvette « pancake » :La partie centrale de l’éprouvette subit une forte contrainte triaxiale. Droite : Simulation numérique de l’endommagement de l’éprouvette « pancake » : Le développement de la porosité dans l’éprouvette résulte de la cavitation instable sous traction triaxial [ACL:LML.08].

b) Modèles d’endommagement non-locaux. Les lois de comportement à gradient de déformation peuvent êtres obtenues en utilisant les techniques d’homogénéisation pour un milieu hétérogène. Cependant, les lois à gradient obtenues par la méthode conventionnelle dépendent de la taille choisie du volume élémentaire représentatif (VER). Nous avons proposé [ACL:LTA.12], [ACL:L.11b], [ ACL:LPASJ.11] une nouvelle méthodologie selon laquelle les lois à gradient obtenues par l’homogénéisation conventionnelle doivent être corrigées pour qu’elles soient indépendantes de la taille du VER. Ce problème ayant été résolu, la méthode proposée ouvre une nouvelle voie dans la construction des lois à gradient dans l’évaluation de l’endommagement et de la rupture des matériaux hétérogènes. Nous avons établi des modèles d’endommagement à gradient de déformation pour un matériau fragile en tenant compte de la naissance et de la propagation des microfissures. Un modèle numérique régularisé a été codé en éléments finis.

Figure.8 Simulation numérique d’un matériau granulaire quasi-fragile. (a) : motif de la fissuration ; (b) réponse globale [ACL:LTA.12].

c) Rupture ductile. Nous avons développé [ACL:IO.10] une nouvelle méthode, appelée DVDS (Discontinuous velocity domain splitting), sans maillage, capable de calculer les charges limites et les surfaces de rupture ductiles associées. La méthode se base sur une partition aléatoire du corps plastique en considérant seulement la déformation localisée aux interfaces des sous-domaines. On arrive ainsi à un problème d’ « optimisation des partitions » (ou d’ « optimisation des formes » dans le cas de deux sous-domaines). La méthode numérique associée fait appel aux algorithmes génétiques d’optimisation et une description de type « level sets » de la partition. DVDS peut être utilisée dans le calcul de la surface de rupture (ductile) des structures naturels (sols, roches, etc) ou métalliques. DVDS peut être aussi très utile dans l’étude de l’hétérogénéité des matériaux comme outil d’homogénéisation numérique. En effet, comme DVDS est une technique sans maillage, elle n’a pas besoin d’une discrétisation fine pour capturer des hétérogénéités complexes.

Figure.9 DVDS utilisée dans le calcul de la rupture ductile (plasticité Mohr-Coulomb) d’un matériau homogène (gauche), d’un matériau avec pores (centre) et d’un matériau avec des grains rigides (droite). Dans les trois cas l’effort de calcul est le même. [ACL:IO.10]

d) Rupture sismique : nucléation et propagation. L’analyse des phénomènes qui gouvernent les mouvements des failles indique que les séismes doivent être précédés d’une phase d’évolution lente et instable, appelée phase d’initiation ou de nucléation, qui n’est pas associée à un phénomène propagatif. La taille de la zone et le temps de nucléation contiennent des informations sur les mécanismes de dissipation et la dynamique de la rupture finale. Nous avons développé [ACL:BIW.08] une méthode éléments-finis pour la rupture sismique qui utilise la méthode de Schwarz de décomposition des domaines. La méthode, qui s’avère très efficace, permet d’isoler la faille du reste du domaine élastique. Nous avons aussi analysé [ACL:HCCFI.10] le rôle de la plasticité des plaques tectoniques dans la propagation et surtout sur l’arrêt de la rupture. Une autre axe de recherche à été développé pour voir la possibilité déterminer, à partir d’enregistrements GPS, si une faille se trouve ou non dans la phase de nucléation [ACL :IV08,IV09].

Figure.10 Nucléation et propagation de rupture sismique sur une faille bifurquée. Le cône de rupture en « super shear » sur la branche du haut déclenche la rupture sur la branche du bas. [ACL:BIW.08]

Voir les autres thématiques de recherche de l’équipe EMC3.